Extension chaoshoneycomb
¶
Version | 0.6.2 |
Repository | https://github.com/chaostoolkit-incubator/chaostoolkit-honeycomb |
This project contains Chaos Toolkit activities for the Honeycomb platform.
Install¶
This package requires Python 3.7+
To be used from your experiment, this package must be installed in the Python environment where chaostoolkit already lives.
$ pip install chaostoolkit-honeycomb
Usage¶
{
"title": "SLO should not be impacted",
"description": "n/a",
"secrets": {
"honeycomb": {
"api_key": {
"type": "env",
"key": "HONEYCOMB_API_KEY"
}
}
},
"steady-state-hypothesis": {
"title": "Use SLO as Steady-State Hypothesis verification",
"probes": [
{
"name": "slo has enough budget left",
"type": "probe",
"tolerance": true,
"provider": {
"type": "python",
"secrets": ["honeycomb"],
"module": "chaoshoneycomb.slo.probes",
"func": "slo_has_enough_remaining_budget",
"arguments": {
"dataset_slug": "ds",
"slo_id": "slo1",
"min_budget": 7.5
}
}
}
]
}
}
That’s it!
Please explore the code to see existing probes and actions.
Configuration¶
Specify the Honeycomb API key either via the secrets
block or via the HONEYCOMB_API_KEY
environment variable. In that later case, you can in fact skip the declaration on the secrets
block as the extension will look for it anyway.
Test¶
To run the tests for the project execute the following:
$ pdm run test
Formatting and Linting¶
We use a combination of black
, ruff
, and isort
to both lint and format this repositories code.
Before raising a Pull Request, we recommend you run formatting against your code with:
$ pdm run format
This will automatically format any code that doesn’t adhere to the formatting standards.
As some things are not picked up by the formatting, we also recommend you run:
$ pdm run lint
To ensure that any unused import statements/strings that are too long, etc. are also picked up.
Contribute¶
If you wish to contribute more functions to this package, you are more than welcome to do so. Please, fork this project, make your changes following the usual black code style, sprinkling with tests and submit a PR for review.
To contribute to this project, you will also need to install pdm.
Exported Activities¶
marker¶
add_marker
¶
Type | action |
Module | chaoshoneycomb.marker.actions |
Name | add_marker |
Return | mapping |
Add a marker.
Leave the default "__all__"
for dataset_slug
to set an environment marker.
Signature:
def add_marker(message: str,
marker_type: str = 'chaostoolkit-experiment',
dataset_slug: str = '__all__',
url: Optional[str] = None,
configuration: Dict[str, Dict[str, str]] = None,
secrets: Dict[str, Dict[str, str]] = None) -> Dict[str, Any]:
pass
Arguments:
Name | Type | Default | Required |
---|---|---|---|
message | string | Yes | |
marker_type | string | “chaostoolkit-experiment” | No |
dataset_slug | string | “all“ | No |
url | object | null | No |
Usage:
{
"name": "add-marker",
"type": "action",
"provider": {
"type": "python",
"module": "chaoshoneycomb.marker.actions",
"func": "add_marker",
"arguments": {
"message": ""
}
}
}
name: add-marker
provider:
arguments:
message: ''
func: add_marker
module: chaoshoneycomb.marker.actions
type: python
type: action
query¶
query_results
¶
Type | probe |
Module | chaoshoneycomb.query.probes |
Name | query_results |
Return | mapping |
Fetch the results of a query
Signature:
def query_results(dataset_slug: str,
query_result_id: str,
timeout: int = 30,
configuration: Dict[str, Dict[str, str]] = None,
secrets: Dict[str, Dict[str, str]] = None) -> Dict[str, Any]:
pass
Arguments:
Name | Type | Default | Required |
---|---|---|---|
dataset_slug | string | Yes | |
query_result_id | string | Yes | |
timeout | integer | 30 | No |
Usage:
{
"name": "query-results",
"type": "probe",
"provider": {
"type": "python",
"module": "chaoshoneycomb.query.probes",
"func": "query_results",
"arguments": {
"dataset_slug": "",
"query_result_id": ""
}
}
}
name: query-results
provider:
arguments:
dataset_slug: ''
query_result_id: ''
func: query_results
module: chaoshoneycomb.query.probes
type: python
type: probe
result_data_must_be_greater_than
¶
Type | probe |
Module | chaoshoneycomb.query.probes |
Name | result_data_must_be_greater_than |
Return | boolean |
Verifies the value for given property is higher than the given min_value
.
To select the most appropriate data, set other_properties
to a set of properties and their values.
Signature:
def result_data_must_be_greater_than(
dataset_slug: str,
query_result_id: str,
property_name: str,
min_value: float,
other_properties: Optional[Dict[str, Any]] = None,
timeout: int = 30,
configuration: Dict[str, Dict[str, str]] = None,
secrets: Dict[str, Dict[str, str]] = None) -> bool:
pass
Arguments:
Name | Type | Default | Required |
---|---|---|---|
dataset_slug | string | Yes | |
query_result_id | string | Yes | |
property_name | string | Yes | |
min_value | number | Yes | |
other_properties | object | null | No |
timeout | integer | 30 | No |
Usage:
{
"name": "result-data-must-be-greater-than",
"type": "probe",
"provider": {
"type": "python",
"module": "chaoshoneycomb.query.probes",
"func": "result_data_must_be_greater_than",
"arguments": {
"dataset_slug": "",
"query_result_id": "",
"property_name": "",
"min_value": null
}
}
}
name: result-data-must-be-greater-than
provider:
arguments:
dataset_slug: ''
min_value: null
property_name: ''
query_result_id: ''
func: result_data_must_be_greater_than
module: chaoshoneycomb.query.probes
type: python
type: probe
result_data_must_be_lower_than
¶
Type | probe |
Module | chaoshoneycomb.query.probes |
Name | result_data_must_be_lower_than |
Return | boolean |
Verifies the value for given property is lower than the given max_value
.
To select the most appropriate data, set other_properties
to a set of properties and their values.
Signature:
def result_data_must_be_lower_than(
dataset_slug: str,
query_result_id: str,
property_name: str,
max_value: float,
other_properties: Optional[Dict[str, Any]] = None,
timeout: int = 30,
configuration: Dict[str, Dict[str, str]] = None,
secrets: Dict[str, Dict[str, str]] = None) -> bool:
pass
Arguments:
Name | Type | Default | Required |
---|---|---|---|
dataset_slug | string | Yes | |
query_result_id | string | Yes | |
property_name | string | Yes | |
max_value | number | Yes | |
other_properties | object | null | No |
timeout | integer | 30 | No |
Usage:
{
"name": "result-data-must-be-lower-than",
"type": "probe",
"provider": {
"type": "python",
"module": "chaoshoneycomb.query.probes",
"func": "result_data_must_be_lower_than",
"arguments": {
"dataset_slug": "",
"query_result_id": "",
"property_name": "",
"max_value": null
}
}
}
name: result-data-must-be-lower-than
provider:
arguments:
dataset_slug: ''
max_value: null
property_name: ''
query_result_id: ''
func: result_data_must_be_lower_than
module: chaoshoneycomb.query.probes
type: python
type: probe
slo¶
get_slo
¶
Type | probe |
Module | chaoshoneycomb.slo.probes |
Name | get_slo |
Return | mapping |
Signature:
def get_slo(dataset_slug: str,
slo_id: str,
detailed: bool = True,
configuration: Dict[str, Dict[str, str]] = None,
secrets: Dict[str, Dict[str, str]] = None) -> Dict[str, Any]:
pass
Arguments:
Name | Type | Default | Required |
---|---|---|---|
dataset_slug | string | Yes | |
slo_id | string | Yes | |
detailed | boolean | true | No |
Usage:
{
"name": "get-slo",
"type": "probe",
"provider": {
"type": "python",
"module": "chaoshoneycomb.slo.probes",
"func": "get_slo",
"arguments": {
"dataset_slug": "",
"slo_id": ""
}
}
}
name: get-slo
provider:
arguments:
dataset_slug: ''
slo_id: ''
func: get_slo
module: chaoshoneycomb.slo.probes
type: python
type: probe
list_burn_alerts
¶
Type | probe |
Module | chaoshoneycomb.slo.probes |
Name | list_burn_alerts |
Return | mapping |
Signature:
def list_burn_alerts(
dataset_slug: str,
slo_id: str,
configuration: Dict[str, Dict[str, str]] = None,
secrets: Dict[str, Dict[str, str]] = None) -> Dict[str, Any]:
pass
Arguments:
Name | Type | Default | Required |
---|---|---|---|
dataset_slug | string | Yes | |
slo_id | string | Yes |
Usage:
{
"name": "list-burn-alerts",
"type": "probe",
"provider": {
"type": "python",
"module": "chaoshoneycomb.slo.probes",
"func": "list_burn_alerts",
"arguments": {
"dataset_slug": "",
"slo_id": ""
}
}
}
name: list-burn-alerts
provider:
arguments:
dataset_slug: ''
slo_id: ''
func: list_burn_alerts
module: chaoshoneycomb.slo.probes
type: python
type: probe
slo_has_enough_remaining_budget
¶
Type | probe |
Module | chaoshoneycomb.slo.probes |
Name | slo_has_enough_remaining_budget |
Return | boolean |
Signature:
def slo_has_enough_remaining_budget(
dataset_slug: str,
slo_id: str,
min_budget: float = 1.0,
configuration: Dict[str, Dict[str, str]] = None,
secrets: Dict[str, Dict[str, str]] = None) -> bool:
pass
Arguments:
Name | Type | Default | Required |
---|---|---|---|
dataset_slug | string | Yes | |
slo_id | string | Yes | |
min_budget | number | 1.0 | No |
Usage:
{
"name": "slo-has-enough-remaining-budget",
"type": "probe",
"provider": {
"type": "python",
"module": "chaoshoneycomb.slo.probes",
"func": "slo_has_enough_remaining_budget",
"arguments": {
"dataset_slug": "",
"slo_id": ""
}
}
}
name: slo-has-enough-remaining-budget
provider:
arguments:
dataset_slug: ''
slo_id: ''
func: slo_has_enough_remaining_budget
module: chaoshoneycomb.slo.probes
type: python
type: probe
trigger¶
get_trigger
¶
Type | probe |
Module | chaoshoneycomb.trigger.probes |
Name | get_trigger |
Return | mapping |
Signature:
def get_trigger(dataset_slug: str,
trigger_id: str,
configuration: Dict[str, Dict[str, str]] = None,
secrets: Dict[str, Dict[str, str]] = None) -> Dict[str, Any]:
pass
Arguments:
Name | Type | Default | Required |
---|---|---|---|
dataset_slug | string | Yes | |
trigger_id | string | Yes |
Usage:
{
"name": "get-trigger",
"type": "probe",
"provider": {
"type": "python",
"module": "chaoshoneycomb.trigger.probes",
"func": "get_trigger",
"arguments": {
"dataset_slug": "",
"trigger_id": ""
}
}
}
name: get-trigger
provider:
arguments:
dataset_slug: ''
trigger_id: ''
func: get_trigger
module: chaoshoneycomb.trigger.probes
type: python
type: probe
trigger_is_resolved
¶
Type | probe |
Module | chaoshoneycomb.trigger.probes |
Name | trigger_is_resolved |
Return | boolean |
Checks that the trigger is in resolved (not “triggered”) state.
Signature:
def trigger_is_resolved(dataset_slug: str,
trigger_id: str,
configuration: Dict[str, Dict[str, str]] = None,
secrets: Dict[str, Dict[str, str]] = None) -> bool:
pass
Arguments:
Name | Type | Default | Required |
---|---|---|---|
dataset_slug | string | Yes | |
trigger_id | string | Yes |
Usage:
{
"name": "trigger-is-resolved",
"type": "probe",
"provider": {
"type": "python",
"module": "chaoshoneycomb.trigger.probes",
"func": "trigger_is_resolved",
"arguments": {
"dataset_slug": "",
"trigger_id": ""
}
}
}
name: trigger-is-resolved
provider:
arguments:
dataset_slug: ''
trigger_id: ''
func: trigger_is_resolved
module: chaoshoneycomb.trigger.probes
type: python
type: probe
trigger_is_unresolved
¶
Type | probe |
Module | chaoshoneycomb.trigger.probes |
Name | trigger_is_unresolved |
Return | boolean |
Checks that the trigger is in unresolved (“triggered”) state.
Signature:
def trigger_is_unresolved(dataset_slug: str,
trigger_id: str,
configuration: Dict[str, Dict[str, str]] = None,
secrets: Dict[str, Dict[str, str]] = None) -> bool:
pass
Arguments:
Name | Type | Default | Required |
---|---|---|---|
dataset_slug | string | Yes | |
trigger_id | string | Yes |
Usage:
{
"name": "trigger-is-unresolved",
"type": "probe",
"provider": {
"type": "python",
"module": "chaoshoneycomb.trigger.probes",
"func": "trigger_is_unresolved",
"arguments": {
"dataset_slug": "",
"trigger_id": ""
}
}
}
name: trigger-is-unresolved
provider:
arguments:
dataset_slug: ''
trigger_id: ''
func: trigger_is_unresolved
module: chaoshoneycomb.trigger.probes
type: python
type: probe